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Abstract

The core metabolic reactions of life drive electrons through a class of redox protein

enzymes, the oxidoreductases. The energetics of electron flow is determined by the

redox potentials of organic and inorganic cofactors as tuned by the protein environ-

ment. Understanding how protein structure affects oxidation–reduction energetics is

crucial for studying metabolism, creating bioelectronic systems, and tracing the his-

tory of biological energy utilization on Earth. We constructed ProtReDox (https://

protein-redox-potential.web.app), a manually curated database of experimentally

determined redox potentials. With over 500 measurements, we can begin to identify

how proteins modulate oxidation–reduction energetics across the tree of life. By

mapping redox potentials onto networks of oxidoreductase fold evolution, we can

infer the evolution of electron transfer energetics over deep time. ProtReDox is

designed to include user-contributed submissions with the intention of making it a

valuable resource for researchers in this field.
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1 | INTRODUCTION

On a global scale from an electron perspective, all organisms are elec-

tronic half-cells, powered by circuits plugged into electron sources

and sinks in the environment.1–3 For example, in aerobic respiration,

which is probably most familiar to us as that is our source of energy,

the oxidation of organic matter leads to a flux of electrons and protons

through metabolic pathways to reduce oxygen to water and CO2. This,

like all metabolic pathways, is a half-cell in terms of chemical

oxidation–reduction pathways. In the case of aerobic respiration, the

other half cell is oxygenic photosynthesis, where sunlight is used to

oxidize water and the electrons and protons drive reduction of CO2 to

organic matter. The voltage potential between the anode (e.g., organic

matter; in its simplest form, sugars) and the cathode (e.g., oxygen) pro-

vides over 1 V of energy. That is the most energy available for life on

this planet—but life existed long before there was molecular oxygen.
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In deep time, a set of enzymes evolved to facilitate electron

transport—the oxidoreductases or EC 1 proteins. Biological electronic

circuits require the movement of electrons over sub-nanometer dis-

tances through an electron transfer chain that powers life. The move-

ment of electrons is governed by physical laws.4–6 Oxidoreductases

organize the positions and relative energetics of chains of redox-

active cofactors, assuring the rapid, directional flow of electrons.7 The

energetic tendency of a redox-active group to gain electron or lose

electrons can be experimentally measured as the redox potential,

expressed in volts (V), relative to a reference such as the standard

hydrogen electrode, at a standard pH. Redox-active groups that con-

tribute to the redox potential can be cofactors such as iron–sulfur

clusters, hemes, or flavins, or amino acid residues such as cysteine,

methionine, or tryptophan. The relative stability of cofactor oxidation

states is largely determined by the cofactor itself8 but are further

modulated by the protein matrix. Electrostatic interactions, such as

proximity of positively charged basic amino acids, can stabilize a redox

cofactor in the reduced state.9,10 The protein can modulate

oxidation–reduction energetics through hydrogen bonding,11,12

hydration13 and dynamical features14 of the protein-cofactor environ-

ment. Groups of oxidoreductases form metabolic pathways, powering

cellular-scale circuits where the current depends on the rate of cataly-

sis and diffusion of substrates.15 It is critical to study how the protein

environment modulates the energetics of oxidation–reduction reac-

tions in order to understand how electron transfer is coupled to

metabolism.

The connection between oxidoreductase structure and energetics

is central to the deep-time evolution of metabolism. Oxidoreductases

must have been among the first proteins at the origins of life over 3.5

billion years ago providing the spark for metabolism.2,16–20 Due to its

fundamental electrical nature, the evolution of metabolism, and the

associated oxidoreductases, was strongly coupled with changes in

the redox state of the planet, which has become increasingly oxidized

over time due to both geochemical and biological processes.2,3,21

Modern oxidoreductases that play central roles in metabolism

such as nitrogenases, photosystem reaction centers and respiratory

complexes, are massive nanomachines—far too complex to have

arisen early in evolution in their current forms. Various structure-

based bioinformatics approaches have been applied to identify univer-

sal sub-folds or domains within larger proteins that may have derived

from early protein forms.16,17,22–31 In previous work focused on the

evolution of oxidoreductases, we found that modern, large enzymes

were largely derived from just a few minimal protein-cofactor building

blocks.16,17,32 In addition to identifying core cofactor binding folds,

we used a structure-derived criterion for electron transfer based on

cofactor–cofactor distances7 to map a network of electron transfer

pathways between the different folds—which we refer to as the Spa-

tial Adjacency Network, SpAN. A notable feature of the SpAN was

the abundance of more reducing cofactor-binding folds in the net-

work center and more oxidizing cofactor-folds at the periphery.17 This

suggests a time axis in the SpAN from the center to the periphery of

the network reflecting the adaptation of protein redox energetics to

emerging electron sources and sinks made available by an oxidizing

planetary environment over geologic time. Mapping quantitative esti-

mates of protein redox energetics onto the SpAN would allow us to

potentially constrain the age of various protein folds based on redox

information in the geologic record.2,33,34

Computational approaches for prediction of redox energetics

based on protein structures are an ongoing challenge. Current

methods span many levels of theory from quantum-mechanical to

empirical35 and recent advances using machine learning.36 Site-

directed mutagenesis studies on natural oxidoreductases37–39 and

protein engineering40–43 have been used to test molecular hypotheses

of how the protein environment tunes redox energetics. Large data-

sets of protein structures, including oxidoreductases, are on the hori-

zon with advances in functional annotation from genomic and

metagenomic datasets20,44 combined with recent advances in struc-

ture prediction45–47 including bound cofactors.48 Effective models

that can predict redox energetics based on structural information will

become increasingly valuable for understanding bioenergetics, evolu-

tion of metabolism and engineering of bioelectronic pathways.41,49

Motivated by the need to design and train better models and the

goal of mapping redox energetics onto the SpAN to study oxidoreduc-

tase evolution, we develop ProtReDox, a manually curated database

of protein redox potentials. We examined literature reports of oxido-

reductase energetics and identified the cofactor type, redox potential,

UniProt and PDB (if available) identifiers, and experimental metadata

such as potentiometric measurement technique, pH and buffer

conditions. ProtReDox version one is available at https://protein-

redox-potential.web.app. We apply this dataset to explore how redox

energetics is modulated by cofactor type, protein environment, exper-

imental conditions and finally how energetics mapped onto the SpAN

inform geochemical constraints on deep-time oxidoreductase

evolution.

2 | METHODS

2.1 | Data collection and curation

The dataset includes 514 redox potentials from 239 unique enzyme/

cofactor pairs consisting of metal ions (Cu, Fe, Mo), flavins, hemes,

and multinuclear iron–sulfur clusters. Proteins are indexed by their

UniProt ID, and approximately half are associated with high-resolution

structures deposited in the Protein Data Bank.50 Redox potentials are

normalized to the standard hydrogen electrode and pH-corrected to

pH 7.0. Redox potentials were only included if the midpoint potential

could unequivocally be assigned to a particular cofactor.

2.2 | ProtReDox database construction

Redox potentials and associated data are stored in a Google Firebase

Cloud Firestore database.51 The ProtReDox website is rendered using

the Firebase Web v.9 modular JavaScript SDK in combination with

React.js (v. 18.2) (react.dev). The website user interface comprises a
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navigation, logo, searchable redox dataset table, and a form to input

new redox potentials and associated information. User-contributed

additions to the dataset will be marked for review and evaluated

manually.

2.3 | Feature-redox correlation analysis

To better understand the key features controlling redox potential,

486 features were calculated as previously described52 for a set of

42 protein structures with type 1 copper sites with experimentally

identified reduction potentials. These features covered 10 categories

of physicochemical properties based on how they were calculated:

solvation, electrostatics, hydrogen bonding, van der Waals, geometry,

pocket void, secondary structure of the backbone region of the pro-

tein directly interacting with the redox site, amino acid angles, pocket

lining, and surface area. The property values for sites on different

chains of the same protein structure were averaged. Any features for

which all structures had the same value were removed, leaving

446 features. Pearson correlation coefficients between features and

reduction potential were then calculated using the python library

SciPy.53 For each structure, the reduction potential with an experi-

mental pH closest to the crystallization pH was selected. When no

crystallization pH was available, the reduction potential with the most

neutral pH was selected. These reduction potentials were then nor-

malized to pH 7.0 for further analysis Equation (1).

2.4 | Mapping redox energetics on the SpAN

The SpAN is a network representation of protein electron transfer

pathways with nodes corresponding to classes of protein microenvi-

ronments surrounding the redox cofactor (termed modules) and edges

reflecting instances in the PDB where two modules are within elec-

tron transfer proximity (cofactor–cofactor distance <14 Å). The gener-

ation of this network was described in our previous work.16,17 The

2020 version of the SpAN was used in this study.

3 | RESULTS AND DISCUSSION

3.1 | Cofactor type is the primary determinant of
redox energetics

Redox potentials included in ProtRedox span almost 2 V, ranging from

the �675 mV 2[4Fe-4S] binding bacterial ferredoxin of E. coli54 to the

+1301 mV chlorophyll A in PS II within T. elongatus.55 Within this

broad range, the cofactor type is the primary determinant of redox

potential (Figure 1). Cofactor types are designated based primarily on

the PDB-derived nomenclature. Cofactors from most reducing to

most oxidizing were 4Fe-4S (SF4), 2Fe-2S (FES), flavins, mononuclear

iron sites (Fe), iron-bound hemes (HEM) and copper sites (Cu). These

ranges are consistent with previous analyses of protein electron

carriers.8

3.2 | Molecular features that determine energetics

Protein redox potential is a complex property that is affected by fea-

tures of the redox site first and second shell environment: solvation,

hydrogen-bonding, ligand interactions, metal coordination, electro-

static interactions56,57 and corresponding enthalpic and entropic

energy terms.58 Redox potential can be directly calculated from first

principle quantum mechanics calculations,59,60 however, these calcu-

lations are expensive and are not practical for protein design. To bet-

ter understand the protein features that determine redox potential,

we calculated the correlation between 433 physicochemical features

(including energy and geometry features) and reduction potentials

(Figure 2) for copper proteins with ReProDox.

The categories of features with best correlations tended to be

those related to electrostatics and solvation. These include solvation

features that describe Lazaridis–Karplus solvation energies both iso-

tropic and anisotropic contributions for various distance cutoffs

within 9 Å. The significant electrostatic features include calculations

for Coulombic electrostatic potential as well as features describing

the theoretical titration curve of surrounding residues. In contrast,

F IGURE 1 Distribution of redox
potentials for the most abundant
cofactor types found in ProtReDox.
Sorted according to mean redox
potential cofactors and displayed
vertically from most reducing to
most oxidizing along with
corresponding atomic structures.
SF4 (4Fe4S; 82) �329 ± 268 mV;
FES (2Fe2S; 64) �220 ± 199 mV;
Flavin (114) �183 ± 141 mV; Fe
(10) �72 ± 173 mV; HEM
(42) 43 ± 190 mV; Cu (147)
333 ± 129 mV. Count of each
cofactor type is within parenthesis.

MCGUINNESS ET AL. 3
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other categories of features are more statistical. For example, eight of

the nine significant “amino acid angle” features are Dunbrack rotamer

energies of residues within 5 Å, indicating the use of some more

common and some less common rotamers. In addition to further eval-

uating significant features that correlate with protein redox potentials

found in ProtRedox, we expect these features can be used to train

models36,52 for high throughput redox-active protein design.

3.3 | Coupling redox energetics to pH

Comparing protein redox potentials is challenging due to the numer-

ous experimental conditions under which redox potentials are mea-

sured. Experimental pH is known to be a significant factor affecting

redox processes accompanied by protonation/deprotonation

events,61 which is commonly observed among Cu redox proteins.61–64

To compare experimental redox potentials values are normalized to a

reference pH (7.0) using the Nernst equation

Ered ¼ Eþ 59:16mV�n� pH�7ð Þð Þ, ð1Þ

where 59.16 mV is the Nernst constant relating pH to redox potential.

Ered is the normalized reduction potential of each protein at pH 7 and

E is the reduction potential measured at the literature pH. The vari-

able n, assumed to be one, is the electron-to-proton ratio involved in

the redox reaction, respectively.

For copper proteins with an azurin fold, we observed a correlation

between pH and redox potential with a slope of �51 mV/pH unit

(Figure 3A), near what is expected if the reactions followed Nernstian

behavior (�59 mV/pH unit), assuming one electron transfer per reac-

tion coupled with one protonation event. Normalization removes the

slope of this correlation (Figure 3B). Experimental pH conditions

showed the strongest positive Pearson coefficient with redox poten-

tial among the computed factors from structure described earlier. The

large variance in redox energetics cannot be explained by a single

molecular feature. Weaker dependencies on pH (i.e., n < 1) have been

observed in systems where electron transfer is accompanied by partial

protonation/deprotonation events.65 This should be taken into

F IGURE 2 Correlation of reduction potential
and physicochemical properties: Groups of
physicochemical properties of metalloenzymes
that can be measured from protein structure are
shown along the x-axis. Each circle is the absolute
value of the Pearson correlation coefficient for
reduction potentials. Colored circles represent p-
value ≤0.05 for the correlation and empty circles
represent p-value ≥0.05. Horizontal box lines,

from top to bottom, represent the upper quartile,
median, and lower quartile correlation values for
the respective property category. The whiskers
display the range of correlation values for the
respective property category, except for outliers,
which are greater than 150% of the interquartile
range from the box.

F IGURE 3 Cu cofactor type correlation of pH and redox potential
(A) experimental results and (B) normalized using the Nernst equation
(Equation (1)). Figures include linear regression with a 95% confidence
interval and the equation of best fit.

4 MCGUINNESS ET AL.
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consideration when interpreting pH-corrected redox potentials

reported in ProtRedox.

Redox gradients and oxidoreductase evolution. Many of the ProtRe-

Dox entries are associated with an experimentally determined three-

dimensional structure deposited in the PDB. This allowed us to map

the redox energetics onto the SpAN—an existing network mapping

electron transfer pathways in oxidoreductases of known struc-

ture.16,17 Nodes in the SpAN correspond to redox-cofactor binding

protein microenvironments—termed modules. Edges reflect the exis-

tence spatial proximity of cofactor atoms in a pair of modules in one

or many structures, providing a pathway for electron transfer. Cofac-

tor edge-to-edge distances less than 14.0 Å were considered

electron-transfer competent.7

The full SpAN contains 133 modules.17 We identified 18 modules

with specified redox energetics (Figure 4, Table 1). These modules

formed a fully connected sub-graph within the SpAN with the excep-

tion of the heme-binding cytochrome-C fold module 140. Within this

network, there is a clear downhill redox energetic gradient, starting

from 4Fe-4S coordinating ferredoxin folds (module 85) with an aver-

age potential of �430 mV and ending with more oxidizing hemes

(modules 1737 at +168 mV; 1746 at +70 mV), the molybdenum-

containing module 16 (+204 mV) and copper module 72 at +325 mV.

One can envision electrons percolating from the center of this net-

work to the periphery, driving redox-coupled reactions along a meta-

bolic pathway.

Multiple features of the SpAN suggest its structure provides

insight into the evolution of oxidoreductases in addition to their meta-

bolic function. Network models of growing systems indicate that

nodes with high centrality and connectivity are the first to arise.66–68

In the ProtReDox annotated sub-graph of the SpAN, flavin module

7 and 4Fe-4S module 85 are reducing such that they are energetically

matched with the early Earth redox environment. It is informative that

the annotated modules form a connected sub-graph within the SpAN.

Most of these modules correspond both to isolated protein electron

carriers44 as well as being domains within larger oxidoreductases.

F IGURE 4 Network of redox active
modules where the nodes are modules that
share common and structural similarity,16,17,71

and the edges are connections between
modules that are within the same protein and
are capable of electron transfer between each
module. Node colors represent a gradient of
average redox potentials for each module.
Gray edges are connections between modules

without associated redox potentials within
ProtReDox, and black edges are between
modules with reported potentials. Node sizes
are porportional to the number of redox
potentials for each module. Nodes with
greater than one measurement are shown.
Size of the node is proportional to the number
of experimental redox potentials for each
node. Labeled nodes represent the redox-
active cluster type: SF4 (85, 539, 1475, 1479),
FES (537, 538, 539), Flavin (7, 8, 2266, 2269,
2280), heme (130, 131, 140, 421, 1737,
1746), Mo (16), and Cu (24, 72). See Table 1
for values.

TABLE 1 Redox energetics associated with SpAN modules.

Module Cofactor Counts Potential (mV)

�539 FES 1 465

1479 SF4 1 �460

1475 SF4 3 �440

85 SF4 39 �429

537 FES 14 �309

2266 Flavin 18 �255

8 Flavin 3 �199

7 Flavin 36 �186

140 HEM 3 �156

2280 Flavin 9 �132

2269 Flavin 8 �122

421 HEM 2 58

1746 HEM 2 70

131 HEM 1 79

538 FES 6 106

1737 HEM 3 168

130 HEM 13 197

16 MO 7 204

72 CU 86 325

24 CU 2 530

Note: Module numbers defined in Reference [17]. Potentials are the

arithmetic mean of values in the database.

MCGUINNESS ET AL. 5

 10970134, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/prot.26563 by R

oyal D
anish L

ibrary, W
iley O

nline L
ibrary on [19/08/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Assignment of potentials is easier within an isolated domain versus a

larger, multi-cofactor enzyme. Small, isolated modules would be useful

building blocks of larger enzymes, forming multi-domain structures

through duplication and diversification. Metal utilization for central

versus peripheral modules is largely consistent with metal availability

through geologic history,3,69,70 with early folds incorporating iron-

containing cofactors and later folds binding molybdenum and copper.

4 | CONCLUSIONS

Knowledge of redox energetics of oxidoreductases is critical to under-

standing metabolic function and evolution. ProtReDox is intended to

be a valuable tool in this regard as we and others contribute to its

growth. Currently, the size of ProtReDox limits the extent to which

structure-based predictive models can be trained on redox energetics.

However, with further experimental investigations and as high-quality

models of protein structures become readily accessible, these models

should improve. This would allow a more complete mapping of data

structures such as the SpAN, providing a greater understanding of the

evolution of redox energetics in metabolism through time.
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